Ветрозащитная мембрана для вентилируемого фасада

Содержание

Как правильно: укладывать или нет пароизоляцию в вентилируемых фасадах

Ветрозащитная мембрана для вентилируемого фасада

В процессе возведения дома каждый собственник или застройщик особое внимание уделяет тепло и гидроизоляционным функциям. Большинство людей отдают предпочтение самым качественным и дорогостоящим материалам, тем самым стремясь добиться для жилья максимального комфорта, тепла, высоких показателей энергоэффективности, качественной влагозащите.

Для этих целей применяют технологии фасада, подразумевающие многослойные конструкции стен: каркасные стены, технологию навесного вентилируемого фасада. Одним из слоев таких конструкций выступают ветро влагозащитные мембраны. Ветрозащитная пленка применяется как для защиты зданий частного домостроения, так и для высотных зданий. Конечно, это разные виды мембран.

Обо всем поподробнее.

Что такое ветровлагозащитная пленка и где ее применяют

Влаго ветрозащитная мембрана – это строительная пожаробезопасная ткань, защищающая утеплитель от увлажнения и утечки тепла при движении воздуха.

Вообще ветрозазитную пленку применяют на разных участках строительства: в кровлях, перекрытиях, перегородках, в полах, в отделке стен бани. Но нас, как профессионалов в области фасадостроения, интересует только мембраны, уложенные на утеплитель в вентилируемых фасадах, каркасных стенах, и при любой облицовке стены с наружным утеплением, но без вентзазора.

Для чего нужен ветрозащитный слой

Влаго ветрозащитные пленки защищают поверхность утеплителя от воды и влаги, от механических повреждений, а также предотвращает теплопотери за счет продольной фильтрации воздуха в утеплителе.

Особенно актуальна защита при косом дожде, тогда утеплитель обильно смачивается и, если нет вентилируемого зазора, который быстро сушит поверхность, есть риск промерзания стен. Мокрый утеплитель теряет до 90% заявленных производителем характеристик по энергосбережению.

Укладывать пароизоляционную пленку необходимо гладкой стороной наружу.

Горит ли ветрозащитная мембрана

Ветрозащитная мембрана для облицовки фасадов экспертизных зданий должна соответствовать группе не горючих материалов – НГ. Все производители заявляют о соответствии группе НГ.

Кто пробовал поджечь зажигалкой кусочек пароизоляционной пленки? Те, кто связан с возведением фасадов, наверное, все пробовали. Прогорает пленка, пламя затухает, горение не поддерживает, но есть некий эмоциональный момент в субъективной оценке.

Керамогранит, металлический кронштейн – НГ, что логично. Поджигай/ не поджигай, максимум закоптится элемент. А мембрана ведет себя иначе, она прогорает до основания, но затухает.

Получается, сама по себе пленка не горит, но при внешнем источнике огня, пламя по ней распространяться будет. Однако, существует разрешительная документация, выданная компетентными и авторитетными органами.

Разрешительной документаций для ветрозащитных мембран, используемых в фасадах, являются:

  • Техническое свидетельство о пригодности для применения в строительстве ( конкретно для устройства ветрогидроизоляционного слоя в конструкциях навесных фасадных систем);
  • Сертификат соответствия требованиям ТУ 8390-001-96837872-2008 с изм. №1
  • Отчет пожарных испытаний на присвоение группы и класса горючести в системе
  • Протокол испытаний на долговечность
  • Протокол испытаний на определение паро- и воздухо- проницаемости
  • Санитарно- эпидемиологическое заключение

На основании анализа разрешительной документации ряда производителей можно прийти в выводам относительно типичных свойств и характеристик ветрозащитных мембран.

Характеристики и свойства строительных тканей

Требования к ветрозащитной мембране, применяемой в частных и общественных строениях, разные. Как минимум, потому что общественные здания подлежат государственной строительной экспертизе.

Масштаб последствий использования не очень качественной пленки при облицовке высотных зданий более обширный.

Под не очень качественной пленкой, редакция в первую очередь понимает, несоответствие группе горючести НГ – не горючий материал.

  • Способность сопротивляться воздействию огня определяет соответствие материала определённой группе горючести. Пленки, разрешенные к использованию в вентилируемых фасадах, имеют группу горючести НГ – не горючие. Следовательно, класс пожарной опасности строительных материалов «КМ-0».
  • Паро- и воздухо- проницаемость определяется свойствами ткани оказывать сопротивление проникновению воздуха при ветровой нагрузке и при выходе теплого пара наружу. Хорошая паропроницаемая мембрана соответствует значению паропроницания: 0,1м2*ч*Па/мг. Сопротивление воздухопроницанию: 1500 м2*ч*Па/мг.
  • Ветрозащитные пленки для стен должны иметь малую водопроницаемость для защиты от дождя и снега.
  • Ткань должна обладать высокой прочностью на разрыв. Эта величина влияет на определение количества точек крепления листа. Количество точек крепления будет увеличиваться пропорционально высоте здания, это связано с увеличением ветровой нагрузки.
  • Каждый погонный метр ткани должен быть способен удлиниться до наступления разрыва не менее чем на 6 см как вдоль, так и поперек. Эластичность обеспечивает сохранность ткани при растяжении.
  • Долговечность не менее пятидесяти условных лет.

Рассмотрим самый распространённый способ использования ветрозащитных мембран в фасадах

Ткань поставляется в рулонах, шириной 1,2м, длинной 50м. Предназначена для устройства ветрогиброизоляционного слоя в ограждающих конструкциях, в т.ч.

в конструкциях фасадных систем с воздушным зазором, для повышения их сопротивления воздупроницанию и защиты утеплителя от неблагоприятных атмосферных воздействий.

Мембрана может применяться во всех климатических районах, при температурах от -60 до +60 градусов, в слабо и средне агрессивных средах.

Соблюдайте простые рекомендации, чтобы монтаж пароизоляционной пленки в вентилируемых фасадах был высокого качества:

  • Какой стороной укладывать пароизоляцию – строго, гладкой поверхностью наружу.
  • Какой стороной крепить пароизоляцию – допустима укладка мембраны горизонтально и вертикально, но обязательно, соблюдение направления: сверху вниз, внахлест не менее пятидесяти сантиметров верхнего слоя на нижний. Расположение полотнищ должно обеспечивать естественный сток влаги, проникающей под облицовку.
  • Используйте столько точек крепления, сколько прорисовано в проекте вентфасада на здание. Помните, чем выше здание, тем больше точек крепления. Плохо закрепленный участок полотна в месте провисания может «хлопать» под воздействием сильных порывов ветра. Контролируйте плотное прилегание полотна к утеплителю. В худшем случае, ветер может сорвать пленку. Как крепить пароизоляцию, каким типом и размером анкера – все есть в проекте. Иногда применение пластиковых анкеров недопустимо.
  • Закутывайте торцы утеплителя вокруг оконных и дверных проемов таким образом, чтобы слой ткани заходил под теплоизоляцию на длину не менее 25см, чтобы избежать задувания ветра под пленку.
  • Устанавливайте пожарные отсечки вокруг оконных проемов, в местах эвакуационных выходов, на внутренних углах здания, если от внутреннего угла здания до окна менее 1200мм. Все меры противопожарной защиты прописаны в Альбоме технических решений конкретной, выбранной вами, марки подсистемы фасада.

Необходимость применения при монтаже ветрозащитной пленки в вентилируемых фасадах носит остро дискуссионный характер

Прецедент отсутствия применения ветрозащитной мембраны создал производитель широко известной марки челябинского утеплителя.

Они получили новое Техническое свидетельство на собственную продукцию, содержащее пункт, разрешающий применение утеплителя с кэшированным слоем без использования ветрогидрозащитной мембраны. Разработка содействовала продвижению продукции на рынок.

Сам по себе этот утеплитель достаточно дорогой, но при монтаже «пирога» системы фасада, подрядная организация экономит за счет отсутствия мембраны. Эту идею подхватили и другие производители утеплителя, и понеслось.

Такое положение дел коренным образом не устраивает производителей мембран, что логично. Производители ведут обширную просветительскую деятельность, направленную на распространение информации о последствиях отказа от гидроветрозащитного слоя.

Аргументы «за» применение ветрозащиты ссылаются на:

Утеплитель разрушается под воздействием высокого давления и порывов ветра в вентилируемом зазоре системы.

На утеплитель попадает вода и влага, и, зимой, не успевая высохнуть, превращается в лед. Кстати, о монтаже фасада в зимний период есть отдельная статья. Тем самым снижаются свойства теплозащиты.

В местах сильного проникновения влаги, утеплитель может обрастать мхом.

Аргументы «против» ветрозащиты:

Многие считают, что ветрозащитная пленка горит. Распространение тяги в зазоре снизу вверх способствует распространению пламени. Поэтому применяют горизонтальную противопожарную отсечку на каждом этаже. Что тоже неправильно, т.к. нарушается принцип вентилируемого фасада.

В остальном аргументы сводятся к опровержению положений защитников применения системы. Мол, утеплитель не разрушается от ветра, т.к. он имеет кэшированный слой, более плотный по отношению к основной плотности минеральной плиты. А намокания минвате в вентфасадах не страшны, т.к. поток ветра в воздушной прослойке таков, что почти моментально высушивает воду.

Редакция оставит мнение по поводу необходимости применения ветрозащитной мембраны при себе, дабы не быть разорванными противоборствующими сторонами.

А правда, как всегда, где-то посередине.

Источник: https://BazaFasada.ru/fasad-zdanij/kak-ukladyvat-vetrozashhitnuyu-membranu.html

Ветрозащитная мембрана для вентилируемого фасада – купить недорого

Ветрозащитная мембрана для вентилируемого фасада

В ходе строительства любого объекта особенное внимание уделяют гидро- и теплозащите. Современные владельцы недвижимости предпочитают наиболее качественные и дорогие по стоимости варианты, что дает возможность обеспечить в жилье максимальный комфорт и оптимальный микроклимат.

Для подобных целей используются различные технологии, среди которых особой популярностью пользуются вентилируемые фасады. Это многослойные конструкции, которые обеспечивают наружным стенам всестороннюю комплексную защиту.

Одним из компонентов таких конструкций являются специальные пленки, которые защищают от ветра и влаги. Их можно использовать для обеспечения защиты различных архитектурных сооружений: частный дом, высотный объект.

Купить ветрозащиту можно в специализированных магазинах вместе с другими материалами для оформления вентфасада. На сайте компаний, которые занимаются производством мембран, можно детально ознакомиться с ценами и особенностями.

Что такое ветрозащита для вентилируемого фасада

Мембрана внешне выглядит как строительная, абсолютно пожаробезопасная ткань, которая в полном объеме обеспечивает защиту утеплителя от влажности и потери тепла.

Ее используют для различных элементов сооружений:

  • Кровля
  • Перекрытия
  • Перегородки
  • Полы
  • Отделка стен

Особенно распространенный тип пленок – это те, которые используют в составе вентфасадов. Могут использоваться при отделке стен с внешним утеплителем, но без вентиляционного зазора.

Ветрозащитная пленка обеспечивает защиту поверхности утеплителя от:

  • Воды
  • Влажности
  • Механических воздействий
  • Утечки тепла.

В особенности актуальностью пользуется защита при косом дожде, когда утеплитель сильно намокает. В таком случае, если отсутствует вентилируемый зазор, есть вероятность, что стены будут промерзать. Когда утеплитель намокает в результате воздействия осадков, он рискует потерять вплоть до 90% эксплуатационных характеристик по энергосбережению.

Функции

Ветрозащитная пленка изготавливается из полиэтилена или полиэстера, она выполняет несколько функций:

  • Защита слоя теплоизоляции от ветра
  • Уменьшение потерь тепла
  • Фиксация и стабилизация теплоизоляции
  • Защита утеплительного слоя от осадков.

Пленки укладывают с внешней стороны утеплителя сверху на каркас, который используется для устройства теплоизоляционных плит. Закрепляется материал посредством строительного степлера, укладывается внахлест и проклеивается скотчем.

Высокий спрос на такие изделия, как ветрозащитная мембрана, объясняется их функциональными особенностями. Использование их для вентилируемого фасада позволяет существенно улучшать теплотехнические свойства здания и снижать нагрузку на различные конструкции, в том числе и на фундамент.

Среди областей использования стоит выделить основные:

  • устройство кровли;
  • оформление перекрытий;
  • технология вентилируемый фасад;
  • перекрытия между этажами;
  • полы;
  • каркасные перегородки.

Ветрозащита призвана выполнять важные функции и увеличивать эксплуатационный срок утеплителя.

Купить мембраны можно по демократичной цене.

Ветрозащитная мембрана для облицовки фасада

Для современного фасада используется множество средств, среди которых варианты для внешней декоративной отделки, утеплитель и ветрозащита. Чтобы материал мог использоваться в фасадных системах, он должен обладать высшим качеством и хорошими эксплуатационными характеристиками.

Приобрести его и утеплитель можно в любых магазинах, которые занимаются реализацией элементов для вентилируемого фасада. Ветрозащита для облицовки вентфасада должна соответствовать целому ряду требований. Как минимум она должна быть пожаробезопасной. Также очень важным моментом является проницаемость пара и воздуха.

Ветрозащита призвана обезопасить конструкции от любых осадков: снега и дождя. Она должна иметь большую прочность, чтобы исключить возможный разрыв. Помимо этого, существенное значение имеет эластичность, которая обеспечит сохранность при вероятном растяжении. Качественный материал обладает эксплуатационным сроком до пятидесяти лет.

Обычно мембраны производятся в форме рулонов различной длины и ширины. Чаще всего параметры составляют: ширина 1.2 метра, длины 50 м. В конструкциях фасадных систем мембраны – неотъемлемый компонент. По мнению экспертов, они могут эксплуатироваться в любых регионах, вне зависимости от климатических условий.

Ветрозащита способна выдерживать колоссальные температурные колебания от минус шестидесяти до плюс шестидесяти.

Типология и разновидности

Ветрозащиту можно разделить на два вида:

  • Влаго-ветрозащитные пленки – отличаются оптимальной паропроницаемостью. Но не обладают хорошей устойчивостью к влаге и воде. Изделие имеет вид двухслойной пленки, внешняя сторона изделия абсолютно гладкая и она защищает утеплительный слой от негативного воздействия снега и дождя. А внутренняя пористая сторона пропускает водяные пары из утеплителя, откуда они отправляются в вентзазор между мембраной и облицовкой фасада. Обеспечивается надлежащая защита утеплительного слоя от влияния давления, которое возникает при интенсивных порывах ветра.
  • Супердиффузионные – проявляют хорошую устойчивость к влаге, но отличаются достаточно высокой ценой. Такой вариант будет актуален для применения в регионах, где наблюдается достаточно высокий уровень осадков и сильные порывы ветра. При таких климатических условиях при недостаточной герметизации отделки наружных стен утеплительный слой подвержен интенсивному увлажнению, что может негативно отразиться на энергоэффективности строительного объекта. Трехслойность структуры мембраны хорошо выводит пары из утеплительного слоя. Также изделие защищает от осадков и в десятки раз увеличивает эксплуатационный срок.

Преимущества использования

Ветрозащитные материалы имеют массу очевидных преимуществ, что расширяет сферу их использования:

  • Простота установки вне зависимости от сезонности;
  • Экологичность — изделия безопасны для человека и окружающей среды;
  • Огнезащитная эффективность;
  • Устойчивы к высокой влажности;
  • Устойчивы к ультрафиолетовому излучению;
  • Устойчивы к температурным колебаниям;
  • Изделия эластичны и прочны;
  • Длительный эксплуатационный срок.

Мембранные изделия не выделяют токсичных веществ.

Поскольку большая их часть является материалом паропроницаемым, то они способны создавать оптимальный комфорт в помещении, хорошо защищая наружные стены от негативных факторов.

Без пленки утеплительный слой быстрее поддается разрушению под влиянием высокого давления в вентфасаде. Минеральная вата и другие типы утеплителя нуждаются в надлежащей ветрозащите.

Купить ветрозащитную мембрану в Москве можно в специализированных магазинах. В продаже можно найти все необходимые составляющие для обустройства вентфасада. Покупайте качественные компоненты у проверенного и надежного продавца.

Как выбрать ветрозащиту

Выбирая ветрозащитное покрытие, стоит акцентировать внимание на такие моменты:

  • Материалы не должны быть токсичными
  • Не должны испарять вредные вещества
  • Высокие эксплуатационные свойства: изделия должны быть прочными, устойчивыми к УФ-излучению, хорошо переносить температурные колебания
  • Длительный эксплуатационный срок
  • Стоимость изделия. Чересчур дешевые изделия не могут обладать всеми необходимыми качествами. Оптимальный вариант — супердиффузионный, который отлично справляется с поставленными задачами.

Специфика монтажа и этапы

Устройство ветрозащитных пленок выполняется в несколько этапов:

  • Подготовка всех требуемых средств
  • Рулон нарезается на отрезки нужной длины
  • Выполняется разметка
  • Укладка материала снизу-вверх
  • Делается нахлест
  • Выполняется герметизация при помощи монтажной ленты

Очень важным моментом является контроль наличия отверстий: их не должно быть, все пересечения, где выступают детали, должны быть герметично закрыты.

Источник: https://fasadblog.ru/vetrozashhitnaya-membrana/

Ветрозащитная мембрана

Ветрозащитная мембрана для вентилируемого фасада

Ветрозащитная мембрана представляет собой одно- либо многослойный материал, который выполняет функции: гидроизоляции, непродуваемого покрытия и диффузии пара.

Мембрана защищает утеплитель от разрушительного действия ветровых потоков, атмосферных осадков и солнечного излучения.

В статье мы рассмотрим виды ветрозащитных мембран, расскажем об их характеристиках и сферах применения, а также приведем общую инструкцию по монтажу.

Ветрозащитная мембрана используется для нейтрализации ветровых потоков. Материал выполняет несколько функций:

  • Удерживает легкий утеплитель на месте.
  • Отделяет холодную наружную зону от внутренней теплой.
  • Защищает волокна утеплителя от выдувания.
  • Служит барьером для атмосферных воздействий.
  • Уменьшает теплопотери, снижая тем самым расходы на отопление.
  • Утепленные кровли, мансарды и чердачные перекрытия. Материал защищает утеплитель во время монтажа кровельного покрытия и не позволяет конденсату попадать внутрь «пирога» в период эксплуатации.
  • Утепленные стены и вентилируемые фасады. Здесь на первое место выходит способность к диффузии пара и гидрофобность. Капли конденсата скатываются по вертикальной шершавой поверхности, а свойства мембраны позволяют стене «дышать».
  • Перекрытия и утепленные полы по лагам. Здесь подойдут пленки, пропускающие пар, но не воду.
  • Каркасные перегородки. Ветрозащитные мембраны предотвращают «распыление» частиц минваты по помещению, защищают от накопления конденсата и повышают уровень воздухонепроницаемости перегородок.

Бюджетными вариантами ветрозащиты выступают пергамин и полиэтиленовая пленка. Недостатком первого является короткий срок службы и низкая биостойкость, из-за чего его используют только в качестве временного покрытия. Полиэтилен же задерживает не только ветер, но и пар. В результате утеплитель накапливает конденсат и разрушается.

Наиболее эффективны многослойные ветрозащитные мембраны. Внешние оболочки отвечают за прочность и устойчивость на разрыв, а внутренняя часть обеспечивает диффузию пара. Благодаря специальной пропитке материал может выступать в качестве временной кровли либо обшивки фасада.

По типу мембраны можно условно разделить на:

  • влаго-ветрозащитные — мембраны с большой паропроницаемостью (от 3000 г/м2 за сутки), но минимальной водоупорностью (200-250 мм водного столба);
  • супердиффузионные мембраны — кроме паропроницаемости от 1000 г/м2 они выдерживают до 1000 мм водного столба.

Влаго-ветрозащитные мембраны

Влаго-ветрозащитные пленки двухслойные — внешняя сторона гладкая и защищает от брызг или пороши, а внутренняя, прилегающая к утеплителю — пористая. Кроме отведения влаги такая пленка обеспечивает устойчивость к воздушному давлению.

Супердиффузионные мембраны

В регионах с обильными осадками гораздо эффективнее использовать супердиффузионные мембраны.

Их трехслойная структура не только обеспечивает паропроницаемость, но и защищает утеплитель и стены от дождя и снега при недостаточной герметичности облицовки.

Цена мембран выше простых полиэтиленовых пленок, но в долгосрочной перспективе затраты окупаются — срок службы утеплителя увеличивается в несколько раз.

Пленки Ондутис

Влаго-ветрозащита от Ондутис не меняет своих свойств при температуре от −40 до +80 градусов и устойчива к атмосферным воздействиям.

Линейка ветрозащитных пленок представлена четырьмя вариациями:

  • А100 — высококачественная пленка с разрывной нагрузкой минимум 125 Н вдоль и 100 Н поперек, паропроницаемостью 3500 г/м2 и водоупорностью от 215 мм вод. ст.;
  • А120 — эта пленка со специальным покрытием, устойчивым к ультрафиолету, может использоваться вместо временной обшивки стен сроком до 3х месяцев благодаря водоупорности от 250 мм вод. ст. и разрывной нагрузке ≥140Н/≥110Н;
  • А100 Смарт и А120 Смарт — улучшенные версии соответствующих пленок с уже нанесенными монтажными лентами на стыках.

При выборе ветрозащиты необходимо обратить внимание на следующие нюансы:

  • Токсичность. Материал не должен выделять вредных испарений.
  • Технические характеристики (прочность, устойчивость к ультрафиолету, температурный диапазон).
  • Срок эксплуатации.

Ориентиром может служить и цена продукции. Супердиффузионные мембраны стоят дороже полиэтиленовых пленок, но лучше справляются с поставленными задачами. Принципиальной разницы в монтаже мембран нет.

Источник: https://ondutis.ru/articles/vetrozaschitnaya-membrana/

Негорючая ветрозащитная пленка ФибраИзол НГ

Ветрозащитная мембрана для вентилируемого фасада

Минераловатным плитам – основному типу теплоизоляционных материалов, применяемых при строительстве, свойственна высокая воздушная проницаемость. Промежутки между отдельными волокнами образуют систему разветвленных пор, проницаемую для газа, пара и жидкостей.

С одной стороны эта особенность может считаться достоинством материала – сквозь него беспрепятственно проходит пар. Однако использовать паропроницаемость утеплителя для осушения воздуха помещения – довольно спорная затея, все-таки, с этим должна справляться система вентиляции.

Контактируя с холодными наружными участками, влажный и теплый воздух конденсируется, неизбежно увлажняя утеплитель. Наличие же даже минимальных количеств влаги внутри фатально влияет на его теплозащитные свойства.

Для предотвращения процесса конденсации используют ряд конструктивных решений, снижающих диффузионные и конвективные потоки поступающей влаги. Для этого применяют ветрозащитную пленку, которая также служит для пароизоляции стен дома, утеплителя, фасада или кровли.

1. Увлажнение с внешней стороны

Увлажнение снаружи происходит сквозь «лицевую» сторону вентфасада даже в случае сплошной облицовки. Чем сложнее фасад, тем больше на нем оконных проемов, врезок, а значит, и больше вероятность появления дефектов монтажа и механических повреждений. Возможен также занос снега через вентилируемый конек или стекание конденсата с подкровельной изоляции на незащищенный утеплитель.

2. Увлажнение с внутренней стороны

Этот тип увлажнения угрожает утеплителю, в основном, в холодное время года. В группе риска – здания, построенные из материалов с повышенной паропроницаемостью, например, ячеистого бетона, а также строения, возведенные с ошибками – некачественной пароизоляцией мансард или плохим заполнением швов в кирпичной кладке.

Что при этом происходит?

В процессе эксплуатации минераловатные плиты в конструкциях стеновых ограждений подвергаются сложному комплексу воздействий: замораживанию-оттаиванию, увлажнению — высушиванию, длительному действию отрицательных или положительных температур, нагрузок и агрессивных сред и т.д. Известно, что наиболее тяжелым воздействием для материалов является циклическое замораживание-оттаивание, так как оно вызывает интенсивное развитие деструктивных процессов в материалах, способных удерживать влагу. Что при этом происходит?

Меняется коэффициент теплопроводности

Постоянство коэффициента теплопроводности во времени – основной критерий эксплуатационной стойкости минераловатных плит.

Установлено, что в реальных условиях эксплуатации минераловатных плит в вентилируемых конструкциях стен под воздействием циклического замораживания-оттаивания теплопроводность плит плотностью 74 кг/м3 может увеличиться в 2,8 раза, а плит плотностью 156 кг/м3 – в 1,9 раза.

Развитие трещин и микродефектов в волокне, а также возникновение внутренних напряжений в каркасе материала, преимущественно в местах сосредоточения групп волокон на границах раздела фаз волокно — связующее, вызывает ослабление связей между связующим и волокном, нарушение структуры изделия и постепенное его разрыхление. Очевидно, что это приводит к значительному понижению термического сопротивления слоя утеплителя.

Меняются геометрические размеры плиты

Толщина минераловатных плит за время эксплуатации может изменяться дважды: сначала имеет место набухание, затем – усадка. На первом этапе разрушается связующее — замерзающая вода раздвигает минераловатные волокна и разрыхляет утеплитель, что вызывает увеличение толщины минераловатных плит и уменьшение коэффициента теплопроводности.

На втором этапе происходит процесс незначительной усадки плит по толщине и увеличение их теплопроводности, что связано с разрушением уже не связующего, а самих волокон.

Усадка плит может ухудшить теплотехнические качества ограждающей конструкции, так как нарушение целостности термической оболочки здания приводит к возникновению «мостиков холода».

Для образцов плотностью 74 кг/м3 предельным числом попеременных воздействий, при котором полностью затухает процесс набухания, оказалось 75 циклов (16 условных лет эксплуатации), а для образцов плотностью 156 кг/м3 – 150 циклов (30 условных лет эксплуатации). При этом толщина образцов увеличилась на 43 и 24 % соответственно.

В результате циклического воздействия замораживания-оттаивания с увеличением числа циклов размеры образцов по ширине и длине уменьшаются, наблюдается усадка. Так, при плотности утеплителя 156 кг/м3 усадка образцов после 150 циклов составила 1 %, а при плотности 74 кг/м3 уже после 75 циклов – 3–4 %.

Так что после 25 условных лет эксплуатации при размерах теплоизоляционных плит 1000 × 500 × 50 мм швы между соседними плитами при их плотности 74 кг/м3 могут раскрыться на 20-40 мм, а при плотности 156 кг/м3 – на 5-10 мм. Отрицательное воздействие на эксплуатационные показатели стен может оказывать набухание плит по толщине.

Если принять толщину теплоизоляционного слоя в наружных стенах с вентилируемым фасадом равной 100 мм, то после 16 условных лет эксплуатации вентилируемая воздушная прослойка уменьшится на 43 мм при плотности утеплителя 74 кг/м3. При утеплении плитами плотностью 156 кг/м3 после 28 условных лет эксплуатации эта прослойка уменьшится на 24 мм, что существенно ухудшит вентиляцию и процесс удаления влаги из утеплителя.

Меняется вес плиты:

Интенсивное развитие деструктивных процессов в материале, вызванное циклическим замораживанием-оттаиванием, приводит к потере массы утеплителя за счет выделения пыли в окружающую среду. После 75 циклов замораживания-оттаивания образцы минераловатных плит теряют около 11 % своей исходной массы.

Однако с увеличением плотности плит динамика потери массы резко снижается. Значительная потеря массы наблюдалась у минераловатных плит плотностью 74 кг/м3, а минимальная — у плит плотностью 156 кг/м3. После 25 условных лет эксплуатации данного материала потеря массы составит 18,78 % для плит плотностью 74 кг/м3 и всего 3,32 % – для плит плотностью 156 кг/м3.

Применительно к вентфасадам такая потеря массы означает, помимо снижения прочностных и теплозащитных свойств, грубейшее нарушение экологии жилища. Например, для утепления девятиэтажного здания серии 90, с площадью утепления 1498 кв. м, требуется 135 куб. м современных минераловатных плит плотностью 74 кг/ куб. м.

За 25 условных лет эксплуатации здания потоки вентиляционного воздуха могут вынести из-за обшивки венфасада 1875 кг волокнистой пыли!

Имеют ли значение геометрические параметры панелей вентилируемого фасада?

Удивительно, но на теплоизоляционные качества минеральной ваты влияют, казалось бы, абсолютно не связанные с ними параметры – например, размеры и характеристики панелей вентилируемого фасада.

Минераловатные плиты благодаря волокнистой структуре способны фильтровать потоки воздуха, что приводит к ухудшению теплозащитных качеств вентилируемыхфасадов.

В воздушной прослойке, находящейся под облицовочными панелями, в ветреную погоду возникает интенсивное движение воздуха, которое способно увеличить теплопотери через наружные стены на 25 %. На уровень теплозащиты влияет:

  • ширина открытого стыка между облицовочными панелями (3; 7; 11 мм);
  • размер вентилируемой воздушной прослойки (20; 50; 80 мм);
  • отношение числа горизонтальных стыков между облицовочными панелями к высоте утепленной части стены здания (0,667; 1,333; 2);
  • плотность минераловатных плит.

Установлено, что большое влияние на изменение термического сопротивления слоя минераловатных плит под воздействием ветра оказывает отношение числа горизонтальных стыков между облицовочными панелями к высоте утепленной части стены здания. Выявлено, что увеличение данного отношения приводит к снижению термического сопротивления на 37%.

Большое влияние оказывает и плотность минераловатных плит. При увеличении плотности с 75 до 150 кг/м3 происходит снижение термического сопротивления на 23 %. Расстояние между теплоизоляционным материалом и тыльной поверхностью облицовочной панели оказывает влияние неравномерно.

При изменении величины вентилируемой прослойки с 20 до 50 мм термическое сопротивление уменьшается всего на 2 %, а с 50 до 80 мм – на 20 %. Наименьшее влияние на снижение термического сопротивления оказывает ширина открытого стыка между облицовочными панелями. Изменение ширины с 3 до 11 мм приводит к снижению термического сопротивления на 17 %.

В реальных конструктивных решениях вентилируемых фасадов значения рассматриваемых выше параметров часто принимаются равными: ширина открытого стыка между панелями – 9 мм; размер вентилируемой прослойки – 50 мм; отношение числа горизонтальных стыков к высоте утепленной части стены – 1,333; плотность минераловатной плиты – 95 кг/м3.

Такое сочетание параметров в условиях воздействия ветра приводит к снижению термического сопротивления слоя минераловатных плит на 0,499 м2 ·°С/Вт, что соответствует условному уменьшению его толщины на 20 мм.

Что можно предпринять? Как защитить утеплитель?

Строгое нормирование воздействия разрушающих факторов гарантирует долгий, до 50 лет, срок службы минераловатной плиты. Для этого должна быть регламентирована системная защита утеплителя, работающего в воздушном зазоре фасада или кровли:

  • защита внешней поверхности минплиты – качественная ветро-гидрозащитная мембрана (пленка);

Можно возразить, что присутствие мембраны уменьшает паропроницаемость системы утепления, однако расчеты показывают, что диффузия водяного пара в этом случае снижается всего на 0,5%.

Применение ветро-гидрозащитных мембран в системах утепления с вентилируемым зазором позволяет не задумываться о водопоглощении, воздухопроницаемости, эмиссии волокна утеплителя, плотности утеплителя.

И самое главное их применение увеличит срок эксплуатации утеплителя и в целом навесной фасадной системы.

Важным параметром при выборе фасадной ветро-влагозащитной пленки являются её эксплуатационные характеристики и показатели безопасности. Современные требования обязуют применять на фасадах только негорючие материалы с высокой степенью огнестойкости.

Привычные многим полимерные пленки к таковым не относятся! Для соблюдения норм пожарной безопасности в современном строительстве используют негорючие ветрозащитные пленки (мембраны) с сертификатом НГ, которые могут монтироваться на всех типах зданий и сооружений.

Источник: http://fibraizol.ru/vetrozashhitnye-plenki/

Ветрозащитная мембрана для вентилируемого фасада – Все об утеплении и энергоэффективности

Ветрозащитная мембрана для вентилируемого фасада

Негорючая мембрана – вид рулонного изоляционного материала предназначенного для защиты утеплителя от ветра и влаги в составе вентилируемых фасадов и скатных кровель.

Продукт, которого не хватало на отечественном рынке материалов из-за запрета на применение горючих мембран, выданного Комитетом по архитектуре и градостроительству города Москвы в 2010 году.

Зачем нужна негорючая мембрана?

Разница в утеплителе с мембраной и без

Минеральный утеплитель нуждается в защите из-за особенностей его строения: минвата представляет собой сплетение мельчайших волокон базальта или стекла, закрепленных с помощью специальных связующих.

Пустоты между волокнами заполнены воздухом, что делает материал воздухопроницаемым. Воздушные потоки, возникающие под облицовкой вентилируемого фасада, выдувают теплый воздух из этих полостей, что влечет значительные теплопотери.

Также, без учета таких потоков, теплотехнические показатели системы будут отличаться от расчетных.

Помимо этого, связующие утеплителя склонны к разрушению из-за воздействия влаги, что приводит к увеличению эмиссии, потере массы и плотности плит.

Высвобожденные частицы базальта и стекла разносятся ветром, попадают в дыхательные пути людей и животных, вызывая заболевания. Многие считают, что влага может попасть на утеплитель только с наружной стороны из-под облицовки.

Это не так! Упускается важный момент образования точки росы при стремлении теплого воздуха из помещения наружу.

Утеплитель без ветрозащиты

Проще говоря: теплый воздух, проходя через стены, может конденсироваться внутри утеплителя, приводя к его увлажнению.

В холодную погоду, со сменой температуры, чередование циклов заморозки-оттаивания конденсируемой влаги способно значительно усугублять процесс.

Применение мембран дает возможность вынести точку росы из утеплителя на свою поверхность, где излишки влаги будут удаляться воздушными потоками.

Исходя из этого, применение ветрозащиты в составе вентилируемых фасадов и скатных кровель позволяет снизить теплопотери и соответственно затраты на обогрев помещений, повышая энергоэффективность зданий и сооружений.

Пожарная безопасность

Необходимость появления негорючей мембраны назрела с ростом трагических происшествий при пожарах на высотных зданиях. Обычные пленки способствовали распространению пламени, что могло привести к еще более печальным последствиям.

Новинка появилась на российском рынке в 2014 году. Покрывающая мембрана ФибраИзол НГ для гидроизоляции, ветрозащиты и огнезащиты разработана специально для безопасного применения в системе вентилируемых фасадов и скатных кровель.

Новый тип мембраны представленный компанией Гиват, расширил ассортимент негорючих решений для изоляции систем навесных фасадов.

Защитная мембрана для вентилируемых фасадов производства Гиват – первая мембрана в своем классе, получившая по итогам испытаний класс негорючести НГ и всю разрешительную документацию.

Технологии и допустимое применение

Новая защитная мембрана разработана и разрешена к использованию в конструкциях навесных вентилируемых фасадов высотных зданий, в составе навесных фасадных систем на каркасах, кроме того, применение официально допускается на объектах, к которым предъявляются повышенные требования пожарной безопасности.

К таким объектам относятся: 

  • детские сады,
  • учебные заведения,
  • школы,
  • поликлиники и больницы.

Высокую безопасность фасадной мембраны в случае пожара обеспечивает новая технология, разработанная компанией Гиват. Материал не подвержен горению, пламя не может распространяться по поверхности материала даже в условиях циркуляции воздуха.

Основная функция материала — изоляция утеплителя от воздействия негативных факторов: воды, ветра и пыли. Материал исключает эмиссию волокна. Смещает точку росы на поверхность мембраны, не давая при этом, образовываться влаге в толще утеплителя из-за конденсации пара.

Основа технологии – специальная защитная пропитка, на основе европейских химических компонентов, не теряющих своих свойств под воздействием негативных факторов окружающей среды и ультрафиолета.

По итогам испытаний, при контакте с пламенем, распространения огня не произошло

С помощью новой технологии ФибраИзол НГ стало возможным взять под контроль и снизить риски, связанные с пожаром, что было остро необходимо при возведении навесных вентилируемых фасадов на социальных и жилых зданиях. При возникновении пожара защитная мембрана будет мешать распространению пламени, это позволит выиграть время для принятия мер и эвакуации людей.

Фасадная пожаростойкая мембрана ФибраИзол НГ прошла процедуру сертификации и имеет соответствующую документацию по ГОСТ.

Мембрана для вентфасадов Гиват поставляется в рулонах.

Допускается использование негорючей фасадной мембраны ФибраИзол НГ даже в деревянных конструкциях навесных фасадов

Подробнее о компании Гиват

Компания «Гиват» была основана в 2014 году, специализируется на производстве и реализации негорючей ветро-гидрозащитной мембраны «ФибраИзол ® НГ».
В её активе:

  • современные производственные технологии и научные разработки;
  • команда профессионалов с многолетним опытом работы;
  • множество успешно реализованных проектов на территории России, стран СНГ и ближнего зарубежья;

Компания стремимся быть лидером в сфере своей деятельности и поддерживать репутацию надёжного партнёра.

Негорючая ветрозащита от компании Гиват

Categories: Без рубрики, Ветрозащитные мембраны

Источник: http://allfacades.com/2014/10/negoryuchaya-membrana-dlya-ventiliruemyx-fasadov-predstavlena-na-rynke/

Ветрозащитная мембрана

Ветрозащитная мембрана представляет собой одно- либо многослойный материал, который выполняет функции: гидроизоляции, непродуваемого покрытия и диффузии пара.

Мембрана защищает утеплитель от разрушительного действия ветровых потоков, атмосферных осадков и солнечного излучения.

В статье мы рассмотрим виды ветрозащитных мембран, расскажем об их характеристиках и сферах применения, а также приведем общую инструкцию по монтажу.

Ветрозащитная мембрана используется для нейтрализации ветровых потоков. Материал выполняет несколько функций:

  • Удерживает легкий утеплитель на месте.
  • Отделяет холодную наружную зону от внутренней теплой.
  • Защищает волокна утеплителя от выдувания.
  • Служит барьером для атмосферных воздействий.
  • Уменьшает теплопотери, снижая тем самым расходы на отопление.
  • Утепленные кровли, мансарды и чердачные перекрытия. Материал защищает утеплитель во время монтажа кровельного покрытия и не позволяет конденсату попадать внутрь «пирога» в период эксплуатации.
  • Утепленные стены и вентилируемые фасады. Здесь на первое место выходит способность к диффузии пара и гидрофобность. Капли конденсата скатываются по вертикальной шершавой поверхности, а свойства мембраны позволяют стене «дышать».
  • Перекрытия и утепленные полы по лагам. Здесь подойдут пленки, пропускающие пар, но не воду.
  • Каркасные перегородки. Ветрозащитные мембраны предотвращают «распыление» частиц минваты по помещению, защищают от накопления конденсата и повышают уровень воздухонепроницаемости перегородок.

Бюджетными вариантами ветрозащиты выступают пергамин и полиэтиленовая пленка. Недостатком первого является короткий срок службы и низкая биостойкость, из-за чего его используют только в качестве временного покрытия. Полиэтилен же задерживает не только ветер, но и пар. В результате утеплитель накапливает конденсат и разрушается.

Наиболее эффективны многослойные ветрозащитные мембраны. Внешние оболочки отвечают за прочность и устойчивость на разрыв, а внутренняя часть обеспечивает диффузию пара. Благодаря специальной пропитке материал может выступать в качестве временной кровли либо обшивки фасада.

По типу мембраны можно условно разделить на:

  • влаго-ветрозащитные — мембраны с большой паропроницаемостью (от 3000 г/м2 за сутки), но минимальной водоупорностью (200-250 мм водного столба);
  • супердиффузионные мембраны — кроме паропроницаемости от 1000 г/м2 они выдерживают до 1000 мм водного столба.
Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.